MATHEMATICS CLASS TEST

TIME: 1.5 HR

This paper contains 25 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. **MARKING**: (+4, -1, 0)

1. The order and degree of the differential equation

$$\left(1+3\frac{dy}{dx}\right)^{2/3} = 4\frac{d^3y}{dx^3}$$
 are:

- (a) $\left(1, \frac{2}{3}\right)$
- (b) (3,1)

2. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ is:

- (a) $\frac{e^{-2x}}{4}$
- (b) $\frac{e^{-2x}}{4} + cx + d$
- (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-2x} + c + d$

3. The differential equation of all non-vertical lines in a plane is:

- (a) $\frac{d^2y}{dx^2} = 0$
- (b) $\frac{d^2x}{dv^2} = 0$
- (c) $\frac{dy}{dx} = 0$

(b) $\frac{dx}{dy} = 0$

The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively:

(a) 1, 1

(b) 1, 2

(c) 3.2

(d) 2, 3

5. The solution of the differential equation

$$(1+y^2)+(x-e^{\tan^{-1}y})\frac{dy}{dx}=0$$
, is:

- (a) $(x-2) = ke^{-tan^{-1}y}$
- (b) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$
- (c) $xe^{\tan^{-1}y} = \tan^{-1} v + k$
- (d) $xe^{2tan^{-1}y} = e^{tan^{-1}y} + k$

6. function y = f(x) has a second order derivative $f^{\prime\prime}(x) = 6(x-1)$. If its graph passes through the point (2,1) and at that point the tangent to the graph is y = 3x - 5, then the function is:

(a) $(x-1)^2$

(b) $(x-1)^3$

(c) $(x+1)^3$

(d) $(x+1)^2$

The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where a is an arbitrary constant is:

- (a) $2(x^2 y^2)y' = xy$ (b) $2(x^2 + y^2)y' = xy$
- (c) $(x^2 y^2)y' = 2xy$ (d) $(x^2 + y^2)y' = 2xy$

8. The solution of the differential equation $ydx + (x + x^2y)dy = 0$ is:

- (a) $-\frac{1}{xy} = C$ (b) $-\frac{1}{xy} + \log y = C$
- (c) $\frac{1}{yy} + \log y = C$
- (d) $\log y = Cx$

The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c > 0, is a parameter, is of order and degree as follows:

- (a) order 1, degree 3
- (b) order 2, degree 2
- (c) order 1, degree 2
- (d) order 1, degree 1

10. If $x \frac{dy}{dx} = y(\log y - \log x + 1)$, then the solution of the

(a)
$$\log\left(\frac{y}{x}\right) = cx$$

(b)

$$\log\left(\frac{x}{y}\right) = cy$$

(c)
$$y \log \left(\frac{x}{y}\right) = cx$$
 (d) $x \log \left(\frac{y}{x}\right) = cy$

(d)
$$x \log \left(\frac{y}{x}\right) = cy$$

11. The differential equation whose solution $Ax^2 + By^2 = 1$, where A and B are arbitrary constants

- (a) second order and first degree
- (b) second order and second degree
- (c) first order and second degree
- (d) first order and first degree

12. The differential equation of all circles passing through the origin and having their centers on the x-axis is

- (a) $x^2 = y^2 + xy \frac{dy}{dx}$
- (b) $x^2 = y^2 + 3xy \frac{dy}{dx}$
- (c) $y^2 = x^2 + 2xy \frac{dy}{dx}$
- (d) $y^2 = x^2 2xy \frac{dy}{1}$

- 13. The normal to a curve at P(x, y) meets the x-axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is
 - (a) an ellipse
- (b) a parabola
- (c) a circle
- (d) a hyperbola
- 14. The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ satisfying the condition y(1) = 1 is
 - (a) $y = \ln x + x$
- (b) $v = x \ln x + x^2$
- (c) $v = xe^{(x-1)}$
- (d) $y = x \ln x + x$
- 15. The differential equation of the family of circles with fixed radius 5 units and center on the line y = 2 is
 - (a) $(x-2)v^{/2} = 25 (v-2)^2$
 - (b) $(y-2)y^{/2} = 25 (y-2)^2$
 - (c) $(y-2)^2 y^2 = 25 (y-2)^2$
 - (d) $(x-2)^2 v^{/2} = 25 (v-2)^2$
- 16. he differential equation which represents the family of curves $y = c_1 e^{c_2 x}$, where c_1 and c_2 are arbitrary constants, is
 - (a) $y' = y^2$

(b) v'' = v'v

(c) yy'' = y'

- (d) $yy'' = (y')^2$
- differential 17. Solution the equation $\cos x dy = y(\sin x - y) dx$, $0 < x < \frac{\pi}{2}$ is
 - (a) $\sec x = (\tan x + c)y$
- (b) $y \sec x = \tan x + c$
- (c) $y \tan x = \sec x + c$
- (d) $\tan x = (\sec x + c)y$
- 18. Let I be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by differential equation $\frac{dV(t)}{dt} = -k(T-t)$, where k > 0 is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is:
 - (a) $T^2 \frac{1}{k}$
- (b) $I \frac{kT^2}{2}$
- (c) $I \frac{k(T-t)^2}{2}$
- 19. If $\frac{dy}{dx} = y + 3 > 0 \& y(0) = 2 \text{ then } y(\ln 2) \text{ is equal to :}$
 - (a) 7

(b) 5

(c) 13

- (d) -2
- 20. The solution of the differential equation $(x^2 y^2) dx +$

- 2xy dy = 0 is-
- (a) $x^2 + y^2 = cx$
- (b) $x^2 y^2 + cx = 0$
- (c) $x^2 + 2xy = y^2 + cx$
- (d) $x^2 + y^2 = 2xy + cx^2$
- 21. The differential equation, which represents the family of plane curves $y = e^{cx}$, is-
 - (a) y' = cy
 - (b) $xy' \log y = 0$
 - (c) $x \log y = yy'$
 - (d) $y \log y = xy'$
- 22. The degree and order of the differential equation of the family of all parabolas whose axis is x - axis, are respectively-
 - (a) 2, 3

(b) 2, 1

(c) 1, 2

- (d) 3, 2
- 23. The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where a is an arbitrary constant is-
 - (a) $2(x^2 y^2)$ y' = xy
 - (b) $2(x^2 + y^2) y' = xy$
 - (c) $(x^2 y^2) y' = 2xy$
 - (d) $(x^2 + y^2) y' = 2xy$
- 24. The differential equation of all circles passing through the origin and having their centres on the x-axis is-
 - (a) $x^2 = y^2 + xy \frac{dy}{dx}$ (b) $x^2 = y^2 + 3xy \frac{dy}{dx}$
 - (c) $y^2 = x^2 + 2xy \frac{dy}{dx}$ (d) $y^2 = x^2 2xy \frac{dy}{dx}$
- 25. If y' = y + 1 and y(0) = 1, then value (s) of $y(\ln 2)$.
 - (a) 2

(b) 3

(c) 4

(d) 5